Перейти к содержимому
Главная страница » Периметр прямоугольника равен 240см. Если длину прямоугольника уменьшить на 14см, а ширину увеличить на 10 см, то его площадь увеличится на 4

Периметр прямоугольника равен 240см. Если длину прямоугольника уменьшить на 14см, а ширину увеличить на 10 см, то его площадь увеличится на 4

Периметр прямоугольника равен 240см.Если длину прямоугольника уменьшить на 14см,а ширину увеличить на 10 см, то его площадь увеличится на 4 см2(в квадрате). Найдите стороны прямоугольника.

Оцените вопрос

2 комментария для “Периметр прямоугольника равен 240см. Если длину прямоугольника уменьшить на 14см, а ширину увеличить на 10 см, то его площадь увеличится на 4”

  1. Пусть длина первоночального прямоугольника равна x см,тогда длина измененного прямоугольника равна (x-14)см.

    Пусть ширина первоночального прямоугольника равна y см,тогда ширина измененного прямоугольника равна (y+10)cм.

    Известно что периметр первоночального прямоугольника равен 240см,а площадь прямоугольника после изменений увеличится на 4см2(в квадрате)

    Составим систему и решим ее:

     \left \{ {{2x + 2y =240\atop {(x-14)(y+10)=xy+4

    \left \{ {{2y=240-2x}\atop {xy+10x-14y-140=xy=4

    \left \{ {{y=120-x\atop {10x-14y=144

    10x-14(120-x)=144

    10x-1680+14x=144

    24x=1680+144

    x=76

    y=120 — 76=44

    Ответ:76 см и 44 см.

     

      

  2. Пусть стороны прямоугольника равны aи b, тогда

                     2a+2b=240

                     (a-14)*(b+10)-a*b=4

                     2a+2b=240 => a+b=120 => a=120-b

                       (a-14)*(b+10)-a*b=4 => (120-b-14)*(b+10)-(120-b)*b=4

                        (120b+1200-b^2-10b-14b-140)-(120b-b^2)=4

                        24b=1056 => b= 44

                       a=120-b => a=120-44=76

    то есть стороны равны: 44; 76; 44; 76

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *